1. Let $S: \mathbb{P}_{3} \rightarrow \mathbb{P}_{3}$ be defined by

$$
S[p(x)]=p^{\prime \prime}(x)-2 x p^{\prime}(x)
$$

(a) Find the eigenvalues and eigenvectors of S.
(b) Let $\varepsilon=\left\{1, x, x^{2}, x^{3}\right\}$ (the standard basis of $\left.\mathbb{P}_{3}\right)$. Is S diagonalizable? If so, write $M_{s}^{\varepsilon, \varepsilon}$ as $M_{s}^{\varepsilon, \varepsilon}=P^{-1} D P$ where D is diagonal and P is an invertible matrix
2. Let $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$. Hs associate matrix with respect to the standard basis is

$$
M_{T}=\left(\begin{array}{ccccc}
0 & 0 & 2 & 0 & 0 \\
0 & -1 & 0 & 6 & 0 \\
0 & 0 & -4 & 0 & 12 \\
0 & 0 & 0 & -9 & 0 \\
0 & 0 & 0 & 0 & -16
\end{array}\right)
$$

(a) Without computations, explain why T is diagonalizable.
(b) Diagonalize T.
3. Suppose that $T(x)=A \bar{x} \quad\left(T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right)$ is diagonalizable. Justify the following statements:
(a) A is invertible if and only if O is not an eigenvalue.
(b) If λ is an eigenvalue of A, then λ^{n} is an eigenvalue of A^{n}.
(c) If λ is an eigenvalue of A and A is invertible, then λ^{-1} is an eigenvalue of A^{-1}.
4. Let $T: V \rightarrow V$ be a linear mapping where $\operatorname{dim} V=3$ with associated matrix with respect to some basis B

$$
M_{T}^{B}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
6 & 3 & 0 \\
14+3 a & a & 3
\end{array}\right)
$$

For what values of $a \in \mathbb{R}$ is T diagonalizable?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

